Kamis, 23 Februari 2012

Analisis Regresi Linier Berganda multivariate dengan matriks | Contoh soal dan jawabannya

Analisis regresi linier berganda ialah suatu alat analisis dalam ilmu statistik yang berguna untuk mengukur hubungan matematis antara lebih dari 2 peubah. Bentuk umum persamaan regresi linier berganda ialah sebagai berikut :

Persamaan tersebut diduga oleh persamaan di bawah ini :

Menentukan b0, b1, b2, …, bk dapat menggunakan metode kuadrat terkecil melalui apa yang disebut dengan persamaan normal seperti di bawah ini :

Bentuk persamaan matriks di atas termasuk ke dalam suatu sistem persamaan linier. Mencari atau menentukan b0, b1, b2, b3, …, bn berarti mencari atau menentukan solusi dari sistem persamaan linier (SPL). Mencari solusi SPL ada berbagai macam cara, diantaranya ialah Metode Eliminasi Gauss, Metode Invers (Metode Matriks yang diperbesar dan Metode Matriks Adjoin), dan Metode Cramer.

Metode Cramer merupakan metode yang paling populer dalam menentukan suatu solusi SPL karena sifatnya yang mudah dipelajari dan sederhana. Menurut Cramer jika kita punya SPL sebagai berikut :

Maka x1, x2, x3, …, xn dapat langsung dicari dengan membagi determinan matriks Aj dengan determinan matriks koefisien A. Dimana :

Teladan :

Diketahui peubah nilai ekonomi makro (Y) dipengaruhi oleh jumlah jam belajar per minggu (X1) dan nilai pengantar ekonomi (X2) dengan data sebagai berikut :

Mahasiswa Y X1 X2

1 40 1 30

2 44 1 35

3 49 2 42

4 53 2 47

5 60 3 50

6 65 3 62

7 69 4 64

8 78 5 71

9 85 6 79

10 92 7 85

Berdasarkan data di atas tentukan hubungan matematis antara nilai ekonomi makro dengan jumlah jam belajar per minggu dan nilai pengantar ekonomi.

Jawaban :

Dari data di atas diketahui bahwa Y merupakan fungsi linier dari X1 dan X2, Y=f(X1, X2) sehingga persamaan regresi yang didapat akan seperti ini :

Y = b0 + b1X1 + b2X2

Mahasiswa

Y

X1

X2

X1.X1

X2.X2

X1.X2

X1.Y

X2.Y

1

40

1

30

1

900

30

40

1200

2

44

1

35

1

1225

35

44

1540

3

49

2

42

4

1764

84

98

2058

4

53

2

47

4

2209

94

106

2491

5

60

3

50

9

2500

150

180

3000

6

65

3

62

9

3844

186

195

4030

7

69

4

64

16

4096

256

276

4416

8

78

5

71

25

5041

355

390

5538

9

85

6

79

36

6241

474

510

6715

10

92

7

85

49

7225

595

644

7820

Jumlah (Σ)

635

34

565

154

35045

2259

2483

38808

Persamaan normalnya ialah sebagai berikut :

Dengan metode Cramer didapatkan b0 = 20.638; b1=3.742; b2=0.533 sehingga persamaan regresinya menjadi :

Y = 20.638 + 3.742 X1 + 0.533 X2

Tidak ada komentar:

Posting Komentar